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Abstract 
Multi-dimensional isomorphous replacement, 
analogous to isomorphous replacement in protein 
crystallography, can be used in fiber diffraction analy- 
sis to overcome the problems caused by the cylindrical 
averaging of the intensity data. Large numbers of 
heavy-atom derivatives are needed, however. A 
method is presented by which molecular structures 
may be determined using data from only one or two 
derivatives, similar to crystallographic single isomor- 
phous replacement. Partial structure information may 
also be incorporated. Examples are given using data 
from oriented gels of tobacco mosaic virus, and 
possibilities for further applications are discussed. 

Introduction 
Many important biological macromolecules, for 
example actin, myosin, tubulin, flagellin, and the coat 
proteins of some viruses, naturally form filamentous 
assemblies and have functions specific to those assem- 
blies. Even in cases where it is possible to crystallize 
such molecules as monomers or small aggregates, it 
is important to know the molecular structure of the 
intact assembly in order to understand the function 
of the molecule. It is therefore necessary to use the 
methods of fiber diffraction. 

Fiber diffraction from macromolecules has many 
aspects in common with protein crystallography, but 
there are also a number of major differences. The 
most important of these stems from the fact that 
although the filamentous particles in a fiber diffrac- 
tion specimen are oriented with their long axes 

approximately parallel, they are randomly oriented 
about those axes. As a consequence, the observed 
diffraction pattern is the cylindrical average of the 
diffraction pattern to be expected from one particle 
(in the absence of interference effects) or from a fully 
ordered array of particles (in the case of a crystalline 
fiber). Considerable information is lost in this averag- 
ing; for example, the effective number of observable 
diffraction data for tobaco mosaic virus (TMV) at 
3 A resolution is reduced by a factor about 2.5, and 
for the bacteriophage Pfl at the same resolution by 
1.7 (Makowski, 1982). These factors are much higher 
for lower-symmetry systems such as microtubules. 

The intensity of fiber diffraction can be written 
(Waser, 1955; Franklin & Klug, 1955) 

I (R,l) = ~ G/1.~ (R)G*j(R) ( 1 ) 
/1 

where l is the layer-line number, R is the reciprocal- 
space radius and n is the order of the Bessel functions 
that contribute to the complex Fourier-Bessel struc- 
ture factor G (Klug, Crick & Wyckoff, 1958). 
Equation (1) can be compared with the crystallo- 
graphic equation 

l ( h , k , l )  = * FhklF hkl. 

If each G is known, a Fourier-Bessel transform of 
the G terms will give an electron density map, just 
as a Fourier transform of the F terms will give an 
electron density map for a crystal. Instead of two 
unknowns (the real and imaginary parts of F), there 
are 2N unknowns, where N is the number of terms 
(G terms) contributing to the sum in (1). N depends 
on the size and symmetry of the diffracting particle 
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and increases with resolution. For TMV at 4 A, N = 5 
(Namba & Stubbs, 1985) but for microtubules at only 
18 A resolution, N is already 7 (Beese, 1984). 

It was shown by Stubbs & Diamond (1975) that 
this problem, the phase problem for fiber diffraction, 
could be solved by multi-dimensional isomorphous 
replacement, a technique analogous to the isomor- 
phous replacement method of protein crystallogra- 
phy. This technique, however, requires 2N  heavy- 
atom derivatives. To determine the structure of TMV 
at 4 ~ would require ten derivatives. In favorable 
cases, the number of derivatives required can be 
reduced by making use of the fine splitting of layer 
lines (Stubbs & Makowski, 1982), which occurs when 
an integral number of turns in the diffracting helical 
structure contains very close to, but not exactly, an 
integral number of identical subunits. For example, 
TMV has 49-02 subunits in three turns. Layer-line 
splitting may in theory reduce the number of deriva- 
tives required by a factor of two, but its use requires 
accurate measurements of layer-line splitting 
(manifested as very small shifts in the layer-line posi- 
tion), and these can only be made with particularly 
well oriented specimens. 

It is evidently desirable to develop methods which 
will allow us to determine structures with as few 
heavy-atom derivatives as possible, particularly when 
layer-line splitting data are not available. In this 
paper, we consider what may be done with data from 
a native specimen and either one or two derivatives. 
If the relative magnitudes of the terms contributing 
to the sum (1) are known for both native and deriva- 
tive data (colloquially, if the separation of the Bessel 
orders is known), the phase of each term may be 
determined separately, without considering the other 
terms. We consider the effect of assuming that all 
terms in the sum (1) contribute equally, and the effect 
of assuming that their contributions may be approxi- 
mated by the expected contributions from a related 
structure. We use TMV as a test case, comparing the 
electron density maps we obtain with a model built 
from a 3.6/~ resolution map in which intensity data 
from six derivatives and layer-line splitting data from 
four were used (Namba & Stubbs, 1985, 1986). 

Data collection 

The data used were part of the data set described by 
Namba & Stubbs (1985). Briefly, X-ray fiber diffrac- 
tion patterns were obtained from oriented gels of 
TMV and its derivatives, and diffracted intensities 
were determined using the angular deconvolution 
method of Makowski (1978). Intensity data were 
sampled along layer lines at intervals of 0.001 A-1. 
Data to 4 ~ resolution were used. Derivative data 
were scaled to native data using a Fourier surface 
whose coefficients (usually for five orders) were deter- 
mined by a least-squares method, taking into con- 
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sideration the heavy-atom contribution (Namba & 
Stubbs, 1985). The derivative data used were the 
methyl mercury nitrate derivative of TMV vulgare 
and the methyl mercury nitrate derivative of the 
mutant Ni-2068 (Tyr 139 -* Cys). Heavy-atom param- 
eters are given in Table 1 of Namba & Stubbs (1985). 

Double isomorphous replacement 

With data available from a native and two heavy-atom 
derivatives, we have three observations with which 
to determine as many as ten unknowns. While this is 
clearly an extremely under-determined situation, we 
can make certain assumptions which will allow us to 
estimate the phases even in this case. 

Initial phasing 

We begin by assuming that all the significant G 
terms in (1) contribute equally to the observed 
intensity, both in the native and the derivative diffrac- 
tion patterns. With this assumption, each term can 
be phased separately, using the conventional two- 
dimensional phasing procedure of protein crystal- 
lography described in such texts as Blundell & 
Johnson (1976). The mean-square lack-of-closure 
error can be estimated from the low-resolution region 
(lower than 10 A) of the equator, a centric zone where 
only zero-order Bessel functions contribute. A phase 
probability distribution is calculated using this mean- 
square error, and the 'best' phase and figure of merit 
(Blow & Crick, 1959) are determined. The mean- 
square error could be re-estimated at this point using 
all the data, although this was not done in this work. 
An electron density map is calculated by combining 
the 'best' phases with the evenly divided structure 
amplitudes, weighted by the figures of merit. It is 
extremely important to use appropriate values for the 
mean-square error, because although this does not 
affect the 'best' phase angle very much, the quality 
and interpretability of the electron density map 
depend very strongly on the figures of merit, which 
are directly coupled with the mean-square error. 
While this is always true in protein crystallography, 
it is particularly important here, because the figures 
of merit partly reflect the quality of the assumption 
that the Bessel order terms contribute equally to the 
intensity. 

A map of TMV was calculated in this way. The 
mean figure of merit was relatively low (0.44) as 
would be expected. [This may be compared with the 
value of 0-56, which was obtained using six deriva- 
tives and with the contributions of the Bessel order 
terms calculated by multi-dimensional isomorphous 
replacement with layer-line splitting (Namba & 
Stubbs, 1985).] The electron density in this map (Fig. 
1 a) was very weak, but comparing it with the model 
built from the six-derivative map (Namba & Stubbs, 



66 I S O M O R P H O U S  R E P L A C E M E N T  I N  F I B E R  D I F F R A C T I O N  

1985), the principal  features of  the virus structure 
could be seen. The four  a helices that run approxi-  
mately radial ly could be recognized, as could the 
R N A  backbone  running along the virus helix. 
Al though the peptide chain was disconnected in 
several places, most parts of  the molecule were in 
density. Even though this map  was calculated using 
the obviously wrong assumpt ion  that all Bessel order  
terms contr ibute equally to the intensity, it clearly 
contains useful informat ion,  and would be well worth 
calculating if no other  source of  phase informat ion 
were available. 

Refinement by density modification 

This map  was improved by a procedure  similar to 
solvent flattening refinement. Solvent flattening as 

(a) 

(b) 

(c) 

Fig. 1. Sections of the TMV map calculated using two heavy-atom 
derivatives. Left side: three superimposed sections, 1.4 ,~, apart, 
containing the left and fight radial ot helices of the coat protein. 
Residues 73 to 87 and 114 to 138, taken from the six-derivative 
multi-dimensional isomorphous replacement structure (Namba 
& Stubbs, 1986), are superimposed as a skeletal model. Right 
side: four sections containing the left and right slewed helices, 
with residues 19 to 63 superimposed. (a) Calculated assuming 
equal contributions from all significant Bessel order terms in 
both native and derivative data. (b) Calculated after one cycle 
of solvent flattening refinement of (a), followed by separation 
of the Bessel order terms based on the electron density. (c) 
Calculated by separating the Bessel order terms as predicted 
from the atomic coordinates of a partial subunit structure from 
the crystalline protein disk, rotated into map (b). 

such, where density outside an envelope presumed 
to exclude only solvent regions is set to zero ( N a m b a  
& Stubbs, 1985), was not sufficiently powerful  to 
correct the poorly determined mult i-dimensional  
phases.  Instead,  a contour  level that appeared  to 
contain most  of  the structure was selected, and all 
density below this contour  was set to zero. This con- 
tour was set high enough to effectively form a much 
tighter envelope than is usually used in solvent flatten- 
ing, penetrat ing all parts of  the molecule. It appears  
that the errors introduced by excluding small areas 
of  real structure are more than offset by the errors 
removed.  Such a procedure  is only appropr ia te  for a 
poorly de termined map,  where the level of  error is 
expected to be higher than the level of  density in the 
low-density regions a round the edge of  the structure. 

This modified density distribution was treated as a 
model  to be used in refinement of  the phases.  The 
separat ion of  Bessel orders was calculated from the 
modified density for each data  point, for native and 
derivative data.  This was done by deriving the relative 
magni tudes  of  the terms for the native da ta  directly 
from the t ransform of  the density, while the relative 
magni tudes  of  the terms for the derivative data  were 
calculated using the heavy-atom parameters  and the 
calculated native phases,  as described by N a m b a  & 
Stubbs (1985). The magni tudes  were normal ized so 
that the calculated intensity agreed with the observed 
intensity. Double  i somorphous  replacement  phases 
were calculated using these separated Bessel terms. 
The mean figure of  merit at this point was 0.57, a 
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Fig. 2. Figures of merit (m) as a function of resolution. Open 
symbols: phases calculated using two heavy-atom derivatives 
(DI R). Closed symbols: phases calculated using one heavy-atom 
derivative (SIR). 

< r n >  

C) Assuming equal contributions to intensity 
from contributing Bessel orders: 

A After one cycle of solvent-flattening 
refinement: 

V After two cycles of solvent-flattening 
refinement: 

DIR SIR 

0.44 0.39 

0.57 0.53 

0.61 0.54 
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definite improvement over the initial 0.44. The 
improvement was particularly evident at high reso- 
lution (Fig. 2). Further cycles of refinement did not 
significantly improve the figures of merit or the inter- 
pretability of the electron density map. 

Parts of the electron map from one cycle of density 
modification refinement are shown in Fig. l(b).  This 
map has considerably higher electron density than 
the unrefined map in Fig. l (a) ,  and is somewhat more 
interpretable. Both of the regions shown contain two 
ot helices running approximately parallel to the sec- 
tions, and models of these helices, as determined 
using six derivatives (Stubbs, Warren & Holmes, 
1977; Namba & Stubbs, 1986) are shown superim- 
posed on the maps. Although there are some areas 
of disconnected density and unexplained extra 
density, most of the model fits the map well, and the 
general molecular structure is easy to recognize. 

Refinement by model building 

It might be possible, but it would probably be 
difficult, to build an atomic model solely on the basis 
of the map shown in Fig. l(b).  If an atomic model 
of a similar structure or a partial structure were avail- 
able, however, it would be quite easy to orient such 

a model in the map. The separation of the Bessel 
order terms derived from such a model could then 
be used as a basis for a further round of double 
isomorphous replacement phasing, and the model 
could be corrected or extended. Such models may be 
available when the monomer or some other fraction 
of the assembly under study has been crystallized, as 
is the case for actin (Kabsch, Mannherz & Suck, 1985) 
and TMV (Bloomer, Champness, Bricogne, Staden 
& Klug, 1978) respectively. Such a procedure would 
be analogous to the alternating rounds of model- 
building and two-dimensional isomorphous replace- 
ment phase determination used by Namba & Stubbs 
(1985). 

The feasibility of this approach was investigated, 
using unrefined coordinates from the structure of the 
protein disk of TMV. The disk crystallizes, and its 
structure has been determined at 2.8/~ resolution by 
Bloomer et al. (1978). It does not contain RNA, and 
24 of its amino acid residues are part of a disordered 
loop in a region corresponding to the inner surface 
of the virus, but coordinates were available for 134 
residues. The rigid-body transformation needed to 
locate the disk subunit in the map was first determined 
by eye in projection, and then adjusted using an Evans 
and Sutherland graphics system. The transformed 
coordinates were used to calculate structure factors 
and thus separate Bessel order terms, and new 
phases were determined by double isomorphous 
replacement. 

The resulting map, shown in Fig. l(e),  was sig- 
nificantly better than the density modification map, 
and structure could be recognized in many areas 
outside the region defined by the partial structure. 
The density corresponding to Ile 93 and Ile 94, which 
are both part of the disordered loop in the disk but 
are ordered in the virus, is shown with an atomic 
model fitted in Fig. 3. 

2 

Fig. 3. Improvement in the electron density map of TMV using a 
partial structure model to separate Bessel orders. Stereo pairs 
with superimposed model of-Ile 93-Ile 94-. Top: Bessel order 
separation assumed equal, then refined for one cycle of solvent 
flattening. Bottom: Bessel order separation on the basis of a 
molecular model that did not include the residues shown. 

Single isomorphous replacement 
Even when only one heavy-atom derivative is avail- 
able, the procedures described above may still be 
used. Given the assumption of equal contributions to 
the intensity from all the Bessel order terms, it is still 
possible to determine the centroid of the phase proba- 
bility and obtain a 'best' phase and a figure of merit. 
Since the single isomorphous replacement phase 
probability is always a bimodal function, the mean 
figure of merit is somewhat lower than it is in double 
isomorphous replacement (Fig. 2). The electron 
density map thus calculated (Fig. 4a) is, as expected, 
of lower quality, and the density is weaker. However, 
there are some recognizable features such as o~ helices 
in this map. 

Refinement by density modification was applied as 
in the case of double isomorphous replacement, 
although the lower overall density meant that a lower 
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contour level had to be used as a molecular envelope. 
Once again there was a marked improvement in the 
mean figure of merit (Fig. 2), from 0.39 to 0.53. The 
map was significantly improved by the refinement 
(Fig. 4b), both in density and in interpretability. 
Further cycles of refinement did not result in any 
appreciable change. Although this map is not as good 
as the double isomorphous replacement map shown 
in Fig. l (b) ,  it is certainly good enough to recognize 
the general features of the structure and to allow 
molecular replacement if a related or partial structure 
is available. 

Bessel order separations calculated using the trans- 
formed coordinates from the disk subunit partial 
structure were used to obtain the single isomorphous 
replacement map shown in Fig. 4(c). This map is 
almost as good as the corresponding double isomor- 
phous replacement map (Fig. 1 c) in the region shown, 
but this is the part of the molecule whose coordinates 
were included in the partial structure. The density in 
the part of the molecule corresponding to the flexible 

(a) 

(b) 

e 

(c) 
Fig. 4. Sections of the TMV map calculated using one heavy-atom 

derivative. Sections and superimposed models as for Fig. 1. (a) 
Calculated assuming equal contributions from all significant 
Bessel order terms in both native and derivative data. (b) Calcu- 
lated after one cycle of solvent flattening refinement of (a), 
followed by separation, of the Bessel order terms based on the 
electron density. (c) Calculated by separating the Bessel order 
terms as predicted from the atomic coordinates of the disk 
subunit partial structure. 

loop of the disk, whose coordinates were not available 
for use in the Bessel order separation, is not as good 
as, for example, that shown in Fig. 3. 

Potential applications 

The procedures we have described appear to work 
well for determining a structure of the degree of 
difficulty of TMV, that is, one where the data include 
five overlapping Bessel orders. This is particularly so 
if two heavy-atom derivatives are available, but even 
the maps derived from one derivative are informative. 
Thus it appears that the assumption that the Bessel 
order terms contribute equally to the intensity is good 
enough to allow isomorphous replacement to be used 
for phase determination. Qualitatively, this is 
because, for this number of terms, AI between the 
native and the derivative correlates reasonably well 
with AIG[ 2. This correlation will decrease progres- 
sively with an increasing number of terms, so that 
although there is no limitation inherent in the 
algorithm on the number of terms that can be separ- 
ated, there will come a point where the maps calcu- 
lated will be uninterpretable. Nonetheless, there ~re 
many structures having sufficiently high symmetry to 
be accessible to these methods, particularly at low 
resolution. Viruses and most crystalline fibers are 
particularly good potential candidates. 

If an initial molecular model can be built, either 
directly from a map or with the aid of a related partial 
structure, further refinement with the goal of a com- 
plete detailed model can be considered. In fiber 
diffraction, care must always be taken during such a 
refinement to ensure that the model does not com- 
pletely dominate the refinement procedure, and thus 
prevent convergence to any structure different from 
itself; this is an obvious consequence of the reduced 
number of observational data. It is thus advisable not 
to discard the isomorphous replacement data in favor 
of, for example, a restrained least-squares procedure 
(Hendrickson & Konnert, 1980; Stubbs, Namba & 
Makowski, 1986) during the early stages of 
refinement. 

Ideally, one would calculate maps using a method 
that combined information from the partial structure 
with isomorphous replacement information. Such 
methods are available for crystallography (Sim, 1959; 
Hendrickson & Lattman, 1970), but have not yet been 
developed in a full multi-dimensional form for fiber 
diffraction. Our experience with the structure deter- 
mination of TMV by multi-dimensional isomorphous 
replacement (Namba & Stubbs, 1985) suggests, 
however, that a satisfactory expedient is the calcula- 
tion of Bessel order separations from the model, 
followed by determination of phases by combining 
model and isomorphous replacement information, 
using a weighting scheme analogous to that of Sim 
(1959). Combination of phase information in this way 
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would be particularly important in the case of single 
isomorphous replacement, where the isomorphous 
replacement phase distributions are bimodal,  and 
could not be expected to give highly interpretable 
maps. Further rounds of density modification might 
also be useful. 

The value of these methods is greatly increased 
when a partial structure is known, and here our results 
are very encouraging. The crystalline TMV protein 
disk is not a particularly good model for the intact 
virus, not only because it lacks RNA and provides 
no information at all for the inner loop, about 15% 
of the protein, but because virtually all of the amino 
acid side chains in the subunit interfaces (a high 
proportion in such a long thin molecule) have 
different conformations in the two assemblies 
(Namba & Stubbs, 1986). Even so, interpretable maps 
were obtained. In a case where a better starting model 
was available, one might expect to be able to deter- 
mine a structure relatively easily. 

An immediately obvious application of these 
methods is to other strains of a virus whose structure 
is already known. A number of strains of TMV have 
yielded good diffraction patterns, but we have not 
been able to determine their structures by simply 
applying difference Fourier methods. Obtaining the 
number of derivatives required for a complete de novo  
structure determination would be a long and difficult 
process but, in several cases, one or two derivatives 
are available. The virus U2, with 70% coat protein 
homology to TMV, appears to have a very similar 
structure to TMV except in a region near the inner 
wall (Holmes & Franklin, 1958), and two derivatives 
of this virus have been made (Mandelkow & Holmes, 
1974). Cucumber green mottle mosaic virus (water- 
melon strain), with 40% homology to TMV, has more 
significant differences, judging from a radial density 
distribution, but presumably still has essentially the 
same protein fold as TMV. At least one derivative of 
this virus is available (Lobert, Heil, Namba & Stubbs, 
1986). Both of these viruses appear to differ in struc- 
ture from TMV in regions that are important in the 

control of viral assembly; thus, their detailed 
molecular structures are of considerable interest. 
Application of the single or double isomorphous 
replacement phasing methods described here should 
permit elucidation of these structures. 

We thank Dr A. C. Bloomer for providing us with 
the coordinates of the TMV protein disk structure. 
This work was supported by NIH grants GM 24236 
and GM 33265. 
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